


www.stickyminds.com MARCH 2005 BETTER SOFTWARE 25

Test & Analyze

I HAVE WORKED WITH MANY TESTING ORGANIZATIONS WHERE A

common pattern is repeated over and over. It goes something like
this—we realize there is more manual testing to do than time avail-

RICHARD DRURY/GETTY IMAGES

Building a test harness is
an effort that often takes
on a life of its own. But it 
doesn’t have to get wild-
ly out of control. Take a
tip from Agile develop-

ment and cultivate
your harness, 
test by test,
taking the

time 
to

GROW YOUR
TEST HARNESS

NATURALLY
BY KEVIN 

LAWRENCE



able, we decide to automate the testing, and we begin working
on a test harness. Several weeks later, we have the start of a har-
ness, but it’s barely useful and we still have not written any
tests. At this point, we’re behind—so we abandon the harness
and revert to manual testing.

The most common reason for abandoning a test harness is
that the team writing it does not completely understand the
needs of the team that will be using it. But even if there is a sin-
gle team that will be both writing and using the test harness, the
harness effort seems to take on a life of its own. Sometimes, the
harness builders get so carried away with harness building that
they never get around to test writing. It becomes a matter of
pride that the harness should be able to deal with any possible
testing requirement. No bell is too small; no whistle too trivial.
Occasionally, the harness is actually completed but it sits on the

shelf because it does not have the features that the testers need
or because the testers don’t have the technical skills to use it.

At my current company, we decided to try something differ-
ent. We already enjoy the benefits of Agile planning and design
and wanted to see if the same just-in-time philosophy would be
as successful when building a test harness.

We had an extensive suite of unit-level tests but very few au-
tomated tests at the system or functional level. We wanted to
start with a smoke test that could be run under our automated
build system—CruiseControl—after every check in. (See Jeffrey
Fredrick’s article in the September 2004 issue of Better Soft-
ware for more about CruiseControl.) A smoke test is a small set
of system-level tests that run quickly and give you confidence
that the product is ready for further testing. The name comes
from hardware testing. If you turn the hardware on and smoke

26 BETTER SOFTWARE MARCH 2005 www.stickyminds.com

Test & Analyze

Reusing the Test Harness
To review the results for the constructor of the Product class:

1. In the Outcomes view, double-click the constructor of Product to see its results. Agitator ex-
pands the node in the Outcomes view and lists the outcomes identified for the constructor. This
method has a NORMAL outcome and two exception outcomes.

2. In the Outcomes view, select NullPointerException.

3. Click the Snapshots toolbar button in the Outcomes view to see snapshots for each occur-
rence of this outcome. On the @EXCEPTION line, the name of each exception thrown is a link to
a stack trace that shows the state associated with the snapshots in that column.

. . . into code like this:

void checkNullPointerSnapshots() {
MethodResultHarness result = getMethodResult(CONSTRUCTOR);
OutcomeHarness npe = result.getOutcome("java.lang.NullPointerException");

SnapshotHarness snapshots = npe.getSnapshots();
for (int i = 0; i < snapshots.getSnapshotCount(); i++) {

SnapshotColumn snapshot = snapshots.getSnapshot(i);
snapshot.assertStackTraceContains("Product.validateCode(Product.java:58)");

}
}

. . . which is used in tests like this:

void reviewConstructor() {
reviewOutcomes();
checkNullPointerSnapshots();
createAssertions();
checkAssertionResults();

}

The tutorial test works great as a soap opera test, but it also finds those subtle changes in the
product that cause the documentation to get out of date very quickly. If you have ever tried to
keep tutorial documentation up to date, you know how tedious that can be. With an automated
test, the writers are notified immediately when a test fails because the product has changed.

As important as the smoke tests are, the
most valuable result of this project is a
robust test harness that is actually use-
ful. We use it extensively for functional
testing and have found other applica-
tions for it, too. For example, whenever a
bug gets submitted to our database, we
create a test that demonstrates the prob-
lem. The harness makes the tests quick
and easy to write and cuts out all of the
“works on my machine” arguments.

One of the more novel uses of the
harness was in automating what Hans
Buwalda has called “soap opera” test-
ing. (See Buwalda’s article in the Febru-
ary 2004 issue of Better Software.) Func-
tional tests can be more effective when
they are designed with a particular sce-
nario in mind, and soap opera testing
takes this idea to the extreme. Like a
soap opera on TV, a soap opera test ex-
aggerates real-life scenarios and crams
many of them into a single episode.
Usually when you design tests, you try
to isolate each test so it can run inde-
pendently and not be affected by the
tests that ran before it. A soap opera
test can find those bugs that show up
only after a series of seemingly unrelat-
ed operations.

We have a tutorial that takes new
users on a whirlwind tour of Agitator,
and it does so in the context of an appli-
cation based on an order-entry system. I
went through the whole tutorial manual
and converted text like this . . .



comes out, there is probably something wrong.
We had attempted to automate system-level tests before. We

started by building a harness so that . . . well, you guessed it,
that project was abandoned. This time, we decided to take a
page out of the Agile developer’s rulebook and build the har-
ness one test at a time.

THE FIRST TEST

My company’s product Agitator is a tool for automating, creat-
ing, and managing developer tests for Java code. Agitator has a
great deal of complexity under the covers, but the basic algo-
rithm for using it is quite simple. First, you agitate a Java class.
Agitator then generates observations that describe what the
code does, which you turn into assertions that describe what
the code should do.

I decided that the first test should agitate a simple Java class
that our CTO uses to introduce Agitator in demos and then
check the observations.

public class SimpleMath {
public static int add(int x, int y) {

return x + y;
}

}

When I agitate this class, Agitator observes that the return value
of the “add()” method always equals x + y. I started writing a
test that uses the same steps that I had performed in the prod-
uct’s user interface.

public class ObservationSmokeTest extends TestCase {
public void testXPlusY() {

agitate(SimpleMath.class);
OutcomeHarness outcome = getOutcome(SimpleMath.class, 

"add(int x, int y)" );
outcome.assertObservationExists("@RETURN == x + y");

}
}

A quick note on jargon: Agitator generates its observations in
the form of Java expressions with a few special keywords like
@RETURN, and we use the term “outcome” to refer to the re-
sult of a method call.

With the first test, I made several important design decisions
for the harness.

The tests will be written in Java using JUnit. This was an
appropriate design decision for our team because all the
testers know Java very well. In different circumstances, I
might have chosen a different technology such as a scripting
language or FIT.

The tests will follow the “shape” of the user interface (UI)
but will not test through the user interface. For example, I “agi-
tate a class” rather than “select a class in the project tree and
click the agitate button.” Tests at the UI layer can be very frag-
ile and hard to maintain.

The harness will model the system at a conceptual level that
a future tester can associate with parts of the UI. In The Design

of Everyday Things, Donald Norman tells us that users form a
mental image—a conceptual model—of how a system is con-
structed. In some systems, the interaction designers go to great
lengths to present a conceptual model that is quite different
from actual implementation. In other systems, the conceptual
model and the implementation model may be identical.

The idea that the harness will model the system at the con-
ceptual level is simple but powerful. It will make it easier for fu-
ture testers to find their way around the tests without needing a
deep understanding of the system architecture. If you have
spent much time looking at automated tests, you know that
they often include so many implementation details that the in-
tent of the test is obscured. I hope to hide all the thorny imple-
mentation details inside the test harness. The harness will be
thorny, so the tests can be smooth and silky.

At the end of the first round of tests, I expect to have a class

www.stickyminds.com MARCH 2005 BETTER SOFTWARE 27

Test & Analyze

Who Should Build 
the Test Harness?
Building a test harness is frequently assigned to a specialist
toolsmith on the testing team. Sometimes a developer will be
pulled away from his day-to-day responsibilities to build a har-
ness. Either of these approaches is a certain recipe for a har-
ness that sits on the shelf. The best approach is for a tester
and a developer to implement the first few tests together and
get the bulk of the harness done. Even if your testers have the
programming skills to build a robust harness, they often will
run into roadblocks put in place by the development team who
may resent being told to change the design so it can be tested.
Having a developer on the team can give the testers the politi-
cal clout to knock down those roadblocks. It also can make the
developer more sensitive to the need to make the product
testable in the future. Ideally choose a senior developer, who
can offer the political and technical contribution a junior devel-
oper may not.

REFACTORING ACROSS BOUNDARIES

Conway’s Law says, “Organizations which design systems are
constrained to produce designs which are copies of the com-
munication structures of these organizations.” For example, if
you have four groups working on a compiler, you’ll get a 4-pass
compiler.

If the lines between your development, testing, and tools
teams are drawn too rigidly, it can be difficult for the harness to
evolve to an optimum architecture. If the testing people have to
ask the tools people for every change, cruft will start to build up
in the tests. Similarly, if the tools people are not allowed to
make changes to the production code, cruft will build up in the
harness. If developers, testers, and tools people work together
closely, or if they are on the same team, code can migrate
seamlessly to the place where it is most appropriate.



in the harness for each concept that would be meaningful to a
user of Agitator. Each test should read like a set of instructions
that you might give to an expert user over the phone.

“Agitate the simple math class. Is Agitator done? OK, look
at the outcome for the “add()” method. It should show that the
return value equals x+y.”

The harness is precisely the code that will allow the tests to
speak the language of a user. It enables my test to say:

agitate(SimpleMath.class)

instead of:

Project project = ProjectManager.
createProject("target/SmokeTest.arx");

project.setClasspath("target/classes");
ProjectManager.setProject(project);
RunnerIterationThread thread = new ClassRunnerThread(target);
agitator.start();
agitator.join();

Checking the results becomes

outcome.assertObservationExists("@RETURN == x + y")

rather than a bunch of code that rummages through XML files.
The best way to discover what functionality to include in a

harness is to start with specific tests and make them work,
rather than plan out the grand harness.

A HARNESS APPEARS

I have a test that won’t even compile but, with just a few key-
strokes and a little magic from my IDE, my test looks like this:

public class ObservationSmokeTest extends TestCase {
public void testXPlusY() {

agitate(SimpleMath.class);
OutcomeHarness outcome = getOutcome(SimpleMath.class, 

"add(int x, int y)" );
outcome.assertObservationExists("@RETURN == x + y");

}

private void agitate(Class target) { }

private OutcomeHarness getOutcome(Class target, String method) {
return new OutcomeHarness();

}
}

OutcomeHarness is the first of many classes that will make up
the complete harness. I don’t like to leave assertions that pass
by default, so I make it fail with a message that reminds me to
add the body of the assertion later.

public class OutcomeHarness {
public void assertObservationExists(String observation) {

Assert.fail(“not done yet”);
}

}

I now can run the test and, just as I expect, it fails.
The next task is to implement the agitate() method. I am

not familiar with this part of the codebase, but I remember that
there is an action class called AgitateAction and start my inves-
tigation there. Actions are method objects that Swing applica-
tions use to encapsulate the behavior of UI commands and are
often a good place to start looking if you want to know how
the system works. I find the code that initiates agitation, and I
copy that code into my test.

This time when I run the test, it takes a little longer before
it fails, and I can see result files that tell me the agitation hap-
pened. The files contain XML, which I am tempted to parse
to get the information I need. But, I want to make my test be-
have more like the user interface, so I find the UI class that
displays the outcome results and copy that code into the test
harness.

Next, I fill in the details of the OutcomeHarness.

public class OutcomeHarness {
private Outcome outcome;

28 BETTER SOFTWARE MARCH 2005 www.stickyminds.com

Test & Analyze

Functional Testing
is not TDD
I have been practicing Test Driven Development (TDD) for sever-
al years now, and I find that the style I use for writing function-
al tests is quite different from the style I use for unit tests. For
one thing, when I write a functional test, the “function” usually
is already in place. TDD-style tests are mostly about using tests
to drive the design of the code; the resulting tests are of sec-
ondary importance.

When I write a functional test, I am very conscious that a
future reader of the test may not be a professional programmer,
so I make an extra effort to make it readable. I start with a com-
plete test expressed in high-level method calls. Once the test is
working, I aggressively remove any incidental code that might
obscure the intent of the test.

The goal of the test is different, too. In a unit test, we try to
separate the unit from the rest of the system so that we can
test it in isolation. By contrast, we want a system-level test, es-
pecially a smoke test, to touch as much of the system as is
practicable. The system tests complement the unit tests and
catch some of the bugs that may fall between the gaps that
sometimes appear when separate units are integrated to build
the final system.

A well-written functional test can take the place of a re-
quirements document and a test plan—but only if you make
the effort to keep the tests readable. Even if the customer
would never dream of writing a test in Java, he will usually ap-
preciate being able to read the tests written on his behalf.



public OutcomeHarness(Outcome outcome) {
this.outcome = outcome;

}

public void assertObservationExists(String observation) {
List observations = outcome.getAssertionsAndObservations();
for (Iterator iterator = observations.iterator(); 

iterator.hasNext();) {
Object candidate = iterator.next();
if (observation.equals(candidate.toString())) {

return;
}

}
Assert.fail("Observation does not exist \"" + observation + "\"");

}
}

Sometimes it’s tempting to add query methods to the harness
so that the test code can ask for information and make asser-
tions about it. The “tell, don’t ask” principle says that client
code should tell an object what to do rather than ask for its
details and do it itself. Applying this principle, I like to create
specialized assertion methods that check the results inside the
harness. This encapsulation helps to prevent the implementa-
tion details from leaking out into the tests, which can impact
readability and result in duplicate code. In this example, if the
formatting of the observation ever changes, we can change the
existence check to something more sophisticated—and we can
do it in one place in the harness rather than in hundreds of in-
dividual tests.

I run the test again and it passes, so it is a good time to re-
view—I have one very shallow test, but I have a harness that al-
lows me to test the system from end to end. I did a lot of work
for that first test, but that work will pay off as I add more tests.

A SECOND TEST

I want to get broad coverage of every subject area of the prod-

uct before I go deep into any one subsystem, so I move to a new
area. Agitator allows the user to add assertions, which get eval-
uated on all subsequent runs. Assertions are just Boolean ex-
pressions, and the simplest expressions I can think of are “true”
and “false.” As always, I perform the test manually in the UI
first. I add a “true” assertion and a “false” assertion. As I ex-
pect, the “true” assertion passes and the “false” assertion fails.
I start a new test class for the new subject area.

public class AssertionSmokeTest extends TestCase {
public void testPassAndFail() {

OutcomeHarness outcome = getOutcome(SimpleMath.class, 
"add(int x, int y)" );

outcome.addAssertion("true");
outcome.addAssertion("false");

agitate(SimpleMath.class);

outcome.assertAssertionPassed("true");
outcome.assertAssertionFailed("false");

}
}

I realize that the two tests have a lot in common and decide to
extract a common superclass. Rather than show all the refac-
toring steps in code, I’ll just show the resulting model as a UML
class diagram. (See Figure 1.)

THE COMPLETE SMOKE TEST

With the second test done, I continue adding tests for all the
other areas of the system. I end up with thirty tests spread
across all the major subsystems and a test harness consisting of
about twenty classes. As a final step, I create a test suite to
make it easy to invoke the whole test from CruiseControl.

public class SmokeTest extends TestSuite {
public static TestSuite suite() {

TestSuite suite = new TestSuite();

suite.addTestSuite(AssertionSmokeTest.class);
suite.addTestSuite(COASmokeTest.class);
suite.addTestSuite(CoverageSmokeTest.class);
suite.addTestSuite(EjbSmokeTest.class);
suite.addTestSuite(KitchenSinkSmokeTest.class);
suite.addTestSuite(FactorySmokeTest.class);
suite.addTestSuite(ObservationSmokeTest.class);
suite.addTestSuite(OutcomeSmokeTest.class);
suite.addTestSuite(SnapshotSmokeTest.class);
suite.addTestSuite(TestClassSmokeTest.class);
suite.addTestSuite(UserExpressionSmokeTest.class);
suite.addTestSuite(WebSmokeTest.class);

return suite;
}

}

www.stickyminds.com MARCH 2005 BETTER SOFTWARE 29

Test & Analyze

Figure 1: This is the result of refactoring the tests to remove duplication.

TestCase

setUp ()
tearDown ()

AgitationTestCase

setUp ()
agitate ()
getOutcome ()

ObservationSmokeTest

testXplusY ()

AssertionSmokeTest

testPassAndFail ()

OutcomeHarness

assertObservationExists ()
assertAssertionPassed ()
assertAssertionFailed ()

(Continued on page 45)



www.stickyminds.com MARCH 2005 BETTER SOFTWARE 45

Test & Analyze

The entire suite takes two minutes to run and is surprisingly ef-
fective at finding regressions. Our unit tests prevent most bugs
from getting into the code, but the smoke test usually catches
the ones that do make it through. This saves a lot of time that
might otherwise be wasted installing brain-dead builds and
frees up resources for manual testing and designing more tar-
geted system-level tests.

INCREMENTAL DEVELOPMENT LEADS 

TO A MORE FLEXIBLE DESIGN

As with every major automation effort, an extensive test har-
ness was needed. Beginning with a modest goal and refactoring
as I went along, I was able to construct a harness that was just
powerful enough for the task at hand but flexible enough to
grow to meet our future testing needs.

This incremental style of development, where you add just
enough code to satisfy the immediate requirement, was for-
malized in Kent Beck’s Test Driven Development and is rapid-
ly becoming popular in programming circles. In Test Driven
Development (TDD), the programmer writes a brief test and
then writes just enough code to pass the test. When a subse-
quent test results in duplication, the programmer refactors
and a design emerges through the repeated application of
these simple actions.

Developers using Agile processes know that incremental

planning and design result in a robust and flexible architecture
with less time wasted building features that will never be used.
The same ideas applied to automating system tests can quickly
deliver valuable, running tests—not just a harness that sits un-
used on a shelf. {end}

Kevin Lawrence works at Agitar Software—a company that
shares his passion for software quality. Kevin can be reached
via email at kevin@agitar.com.

(Continued from page 29)
GROW YOUR TEST HARNESS NATURALLY

Want searchable
access to every article
ever published in
Better Software?

The StickyMinds.com PowerPass gets

you there. Visit StickyMinds.com/

powerpass to learn more.

1/2
horizontal

right

ICSQ



page 46
full-page ad

SQE: PowerPass


